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Results of an experimental and numerical study of parametrically excited nonlinear 
cross-waves in the vicinity of the cut-off frequency, are reported. Experiments are 
performed at three cross-wave modes and in the whole range of existence of cross- 
waves. Numerical studies are based on the solution of the nonlinear Schrodinger 
equation with a boundary condition at  the wavemaker which corresponds to 
parametric excitation. The validity of the scaling procedure adopted in the model is 
verified experimentally. Dissipation is incorporated in the model equation and in the 
wavemaker boundary condition. The influence of the wave breaking on the range of 
existence of cross-waves is discussed and the relation between the maximum possible 
steepness of cross-waves and the limits of their existence is obtained. 

1. Introduction 
Cross-waves are standing waves that appear in a rectangular wave tank equipped 

with a wavemaker, at the subharmonic of the forcing frequency due to parametric 
resonance (Garrett 1970; Mahony 1972). The inviscid model equation valid to the 
third order in the small parameter of the problem, E ,  as well as the appropriate 
boundary conditions a t  the wavemaker, were first derived by Jones (1984). Miles 
(1984, 1985) and Miles & Becker (1988) rederived the governing equation using an 
entirely different approach and showed that it can be presented in the form of a 
nonlinear Schrodinger (NLS) equation. Lichter & Chen (1987) solved the NLS 
equation numerically, introducing into the model equation an additional term to 
account for dissipation along the tank. The dissipation term was estimated in 
accordance with the experimental study of the neutral stability of cross-waves by 
Barnard & Pritchard (1972). For a particular value of forcing amplitude and 
frequency Lichter & Chen obtained agreement between the period of long-time 
modulation in their numerical solution of the NLS equation and the experimental 
result of Barnard & Pritchard. 

In  the experiments of Lichter & Shemer (1986) additional modulated wave 
patterns, like propagating envelope solitons, ,were first observed. In  a recent 
investigation, Shemer & Lichter (1987) performed a detailed experimental analysis 
of the fifth-mode cross-wave behaviour a t  various forcing frequencies and amplitudes. 
The neutral stability curve was also obtained in their work. The presentation of the 
experimentally obtained neutral stability curves of Barnard & Pritchard and of 
Shemer & Lichter, as the normalized dimensionless forcing amplitude E us. the 
detuning parameter A ,  revealed qualitative differences between various experimental 
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facilities and modes of cross-waves (Kit & Shemer 1989). Kit & Shemer attributed 
this effect mainly to the dissipation a t  the wavemaker in the experimental facility 
used by Shemer & Lichter. The dissipation a t  the wavemaker was therefore 
incorporated in the model by modifying the boundary condition a t  the wavemaker, 
following the ideas outlined by Shemer & Kit (1988) for the closely related 
phenomenon of the nonlinear sloshing waves directly excited at  the forcing 
frequency. 

In the present work we investigate the long-time evolution of cross-waves in an 
experimental facility where the dissipation rate a t  the wavemaker can be varied. 
This enables us to study, in particular, the similarities and the differences between 
the two types of resonant nonlinear standing wave in a rectangular tank, i.e. the 
sloshing waves directly excited at  the forcing frequency (Kit, Shemer & Miloh 1987 ; 
Shemer & Kit 1988), as compared to the much more complicated parametrically 
generated subharmonic cross-waves. The experiments are performed a t  three cross- 
wave modes, and for a wide range of forcing amplitudes and frequencies. Numerical 
solutions corresponding to these experimental parameters, are obtained. Special 
attention is paid to the question of the conditions necessary to sustain the nonlinear 
cross-waves. This question has not been addressed before in experimental or in 
theoretical works dealing with cross-waves. The comparison between the numerical 
and the experimental results leads to certain conclusions regarding the limitations of 
the theoretical model. It is shown that breaking of steep cross-waves has to be 
accounted for in the model in order to obtain agreement with the experiment. 

2. Model equations 
The model equations describing the time and the space evolution of cross-waves in 

an inviscid fluid and the corresponding boundary condition at the wavemaker, were 
first obtained by Jones (1984). The equations of Jones were shown to be equivalent 
to a familiar nonlinear Schrodinger (NLS) equation (Miles 1985). Miles has indicated 
that a sign error existed in the original definition of the detuning coefficient A in the 
derivation of Jones. Miles & Becker (1988) have rederived the governing equation, 
using the Lagrangian formulation of the problem. Lichter & Chen (1987) have also 
rederived the NLS equation for the resonant cross-waves, and reported on some 
differences with Jones in the definition of equation coefficients. Taking into account 
this controversy and in order to perform quantitative comparison between the 
experimental and the theoretical results, we have derived the NLS equation and the 
wavemaker boundary condition again, following the lines of Kit et al. (1987). Our 
result in the absence of dissipation was identical to the expressions obtained by 
Jones, if the correction of Miles (1985) is taken into account. Following Shemer & Kit 
(1988), we also take into account in our model dissipation along the tank and a t  the 
wavemaker. 

We consider a deep rectangular tank with the side walls at y = O  and y =  b, 
equipped with the wavemaker a t  one end, x = 0, and with the mean water level at 
z = 0, z being directed upward. The channel width b and the characteristic time scale 
(big);, g being the acceleration due to gravity, were used to render all variables 
dimensionless. The wavemaker operates at the forcing frequency a, the sub- 
harmonic of which, w = $, is the frequency of the nth mode cross-waves and is close 
to the deep-water resonant value w, = (nxg/b)t. The wavemaker surface location, 
x = [ ( z ,  t),  is given by 

x = [ ( z ,  t )  = $sF(z) (i e-isat + *), (1) 
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s being the wavemaker amplitude a t  mean free surface level and F ( z )  the wavemaker 
amplitude shape function: defined so that F(0)  = 1. The small 
problem, c ,  is proportional to s, and is defined by 

parameter of the 

(2) 

where f, depends on F ( z ) ,  

(3) 

our experimental 

dF f, = - 2F(0) + 4nx F ( 5 )  dg+ e2nxc - @., dCd5. 

For the shape function of the hinged wavemaker installed in 
facility, we obtain from (2) and (3) the following working expressions for the cross- 
wave modes investigated in the present work: for the second mode, f2 = 4.44, 
e2 = 1.77 s/b; for the third mode, f, = 7.53, c3 = 2.45 s /b  and for the fifth mode, 
f5 = 13.77, e5 = 3.47 s/b. 

With the value of e known, one obtains the relations between the normalized slow 
variables of the problem and the corresponding physical values. The slow time T and 
length X variables are defined as: 

The detuning parameter h has the following form 

1- + 
The frequency-independent portion of A ,  which is due to the cross-waves interacting 
with the progressive wave field along the tank, is usually negligible and decreases 
with increasing mode number n. The maximum value of this correction for the lowest 
mode employed in the present experiments, n = 2, is 0.02. The normalized 
dimensionless potential amplitude C(X,  T )  is related to the dimensional cross-wave 
potential 4 by 

4 = e(b3g)iexp r?) cos r?) [ C ( X ,  5“) ePiwt + *I. 

The governing NLS equation for the complex cross-wave velocity potential 
amplitude C has the following form: 

ac a2c 
i-+-+(A+a,)C+21CI2C = 0, 
aT ax2 

with the homogeneous boundary condition a t  the wavemaker 

- = iC*-a,C, 
ax 

(7) 

where a, and a2 are the complex dissipation coefficients along the tank and a t  the 
wavemaker, respectively. Note that both the absolute values and the arguments of 
these complex coefficients can be calculated for purely molecular dissipation, Shemer 
& Kit (1988). The values obtained from the appropriate equations are, however, 
substantially lower that those estimated by Lichter & Chen (1987) and Kit & Shemer 
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(1989) from the neutral stability experiments by Barnard & Pritchard (1972) and by 
Shemer & Lichter (1987). The physical reasons for this discrepancy are discussed in 
detail by Kit & Shemer. 

3. Experimental and numerical procedures 
Experiments were carried out in a rectangular wave tank which is 18 m long, 

1.2 m wide and filled to a mean water depth of 0.6 m. The tank is equipped by a 
modular wavemaker. The detailed description of the experimental facility and the 
data acquisition procedure were presented in Shemer, Kit & Miloh (1987) and Kit 
et al. (1987). The wavemaker was driven by a computer-generated signal. The 
sampling interval in each record was selected so that 32 data points were sampled 
during the forcing period, thus giving 64 data points per cross-wave period. The 
amplitude and the phase of the cross-wave were calculated from these records for 
each subharmonic period. The experimentally obtained dependence of cross-wave 
amplitudes on time was usually slightly smoothed in graphic presentation using the 
running average procedure. The total duration of each record was chosen in 
accordance with the long-time behaviour of the wave field. 

The variation of dissipation rate at the wavemaker in the present work was done 
by applying roughness elements (steel angles) at the wavemaker surface. Details of 
wavemaker geometry with and without these roughness elements were discussed in 
detail by Shemer & Kit (1988). 

Equation (7)  with the boundary condition a t  the wavemaker (8) was solved 
numerically by the semi-implicit Cranc-Nicholson scheme, with the evaluation of the 
nonlinear term performed using the suggestion by Aranha, Yue & Mei (1982). The 
domain of calculations was large enough to eliminate the influence of the far end. The 
homogeneous boundary condition a t  the wavemaker was treated by separation of the 
real and the imaginary parts, which was necessary because of the presence of the 
complex conjugate term in (8). In  most cases, the computations were performed with 
the timestep AT = 0.02 and the space step AX = 0.2. When strong spatial gradients 
were present in the wave field, smaller integration steps were used. A similar 
numerical scheme was extensively verified in earlier computations of the long-time 
evolution of directly generated standing waves in the tank (Kit et al. 1987). 

When computations were performed with a zero initial condition, a small decaying 
in time inhomogeneous forcing term in the form of ieexp ( - T )  was added to the 
right-hand side of (8) in order to provide the initial disturbance. The chosen value of 
e was usually 0.1. While this initial excitation is different from that used by Lichter 
& Chen, it does not affect the results after the initial period. In certain runs, a non- 
zero initial condition was employed. In  these cases, the artificial inhomogeneous 
driving term became unnecessary and the calculations started with the wave field 
which existed in the tank at  the end of the previous run (hot initial condition). This 
technique made it possible to study numerically the hysteresis observed in the 
experiments. 

4. Verification of scaling 
The scaling of the dimensionless variables in the present work is identical to that 

suggested by Jones (1984). Lichter & Chen questioned the suitability of this scaling 
for the long-time evolution analysis of nonlinear cross-waves. A convenient way to 
check the validity of the adopted scaling procedure is to calculate the ratio of the 
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FIGURE 1. The power spectrum of the surface elevation at X = 0.3; n = 3 , h = O  

amplitudes of the progressive wave a t  the frequency of forcing, apr, and the standing 
cross-wave of the nth mode a t  the subharmonic frequency, a,, and compare it with 
the appropriately scaled experimentally measured values. The amplitude of thc 
cross-wave, a,, is obtained from the velocity potential, see (6), while apr for deep 
water is given by the linear theory (Havelock 1929). The resulting expression for the 
geometry of our facility has the following form: 

Comparison of the directly measured ratio between the amplitudes of the progressive 
and the cross-waves with the normalized according to (6) cross-wave amplitude, 
which depends on the chosen expression for the small parameter ( 2 ) ,  could thus serve 
as a tool for verification of the scaling procedure. 

Figure 1 shows the experimentally measured power spectrum of the surface 
elevation close to the wavemaker for the cross-waves of the third mode. The energy 
density ratio between the subharmonic and the forcing frequencies in this figure 
equals 4.0, in a very good agreement with the amplitude ratio between the standing 
subharmonic cross-wave and the propagating wave a t  the frequency of forcing, 
calculated from (9), which for n = 3 and ICI x 0.3, gives the value of x 2.25. This 
observation supports the validity of the scaling procedure suggested by Jones (1984) 
and adopted in the present work. 

5. Long-time evolution of cross-waves 
When the resonant standing waves in a rectangular tank are excited directly by 

a wavemaker having a typical lengthscale equal to the wave-length of the standing 
wave, it is possible to obtain very good qualitative and quantitative agreement 
between the experimental results and the numerical solutions of the NLS equation 
(7) €or a wide range of forcing conditions, when the dissipation coefficients along the 
tank and at the wavemaker are properly chosen (Shemer & Kit 1988). The question 
whether the substantially more complicated physical mechanism of parametric 
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FIGURE 2. Long-time modulation patterns observed in the experiments: (a)  n = 5 ;  E = 1.36 x 
h = -0.10; higher dissipation rate at the wavemaker, ( b )  as in (a) ,  but  lower dissipation rate at the 
wavemaker; (e)  n = 3, E = 1.21 x h = -0.1. 
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excitation can be grasped satisfactorily by the model NLS equation (7)  with the 
homogeneous boundary condition a t  the wavemaker (8), remained open and is thus 
of special interest. In  order to provide an answer to this question, extensive 
measurements of cross-waves at various forcing conditions and three different modes 
were performed. This experimental study was accompanied by numerical solutions 
of the model equations with appropriate dissipation coefficients. 

5.1. Experimental results 

The possibility of obtaining a rich variety of evolution patterns of cross-waves was 
demonstrated by Shemer & Lichter (1987) who performed experiments in the present 
facility for n = 5 and high dissipation rate a t  the wavemaker (with the roughness 
elements attached to its surface). I n  this work we limit ourselves to presenting only 
a few selected long-time evolution figures out of a substantial body of accumulated 
experimental data, which contribute to a deeper understanding of physical processes 
in nonlinear cross-waves. 

The results obtained for the cross-waves of the fifth mode at both dissipation rates 
at the wavemaker and a t  identical values of h = -0.10 and of E = 0.0136, are given 
in figure 2 (a,  b ) .  The pattern obtained a t  the higher dissipation rate is characterized 
by the quasi-periodic appearance of solitons, while a t  the lower dissipation rate no 
such solitons appeared. Note that a t  the fifth cross-wave mode, no solitons could be 
observed a t  the lower dissipation rate a t  the wavemaker in the whole range of 
existence of cross-waves. These results show the essential influence of dissipation at 
the wavemaker on the cross-wave regime in the tank. In  this sense cross-waves 
therefore appear to be similar to the directly excited sloshing waves (Shemer & Kit 
1988). 

I n  the experiments a t  the third mode with a smooth wavemaker, strong non- 
periodic modulations in time, occasionally resembling soliton appearance, were 
obtained a t  A = 0, E = 0.0121 (figure 2 c ) .  The focusing of the wave energy seems to 
increase with the distance from the wavemaker. The details of slow-time modulation 
of cross-waves, presented in figure 2, thus show much more complicated patterns in 
comparison with the nearly perfectly periodic modulation of the directly excited 
sloshing waves. At lower values of h(h < -0.45), nearly steady trapped cross-waves 
were observed, as was the case for the fifth mode. 

A convenient way to summarize the bulk of information regarding the time 
dependence of cross-wave amplitudes, is to present, as a global characteristic of the 
wave field, the variation of the long-time averaged amplitude of the cross-waves 
with the detuning parameter h (figure 3 a ) ,  and, as a characteristic of the depth of 
modulation at a slow timescale, the r.m.s. value of the modulated amplitude, 
normalized by its mean value (figure 36). 

At high dissipation rate a t  the wavemaker and n = 5,  a well-defined frequency 
exists, a t  which transition between the steady and the modulated cross-wave regimes 
occurs (Shemer & Lichter 1987). Our analysis of their raw experimental data shows 
that for three forcing amplitudes employed, E = 0.0136, B = 0.0144 and E = 0.0176, 
the transitional value of h was close to - 0.11 in all cases. In  the present experiments 
at lower wavemaker dissipation rate (without roughness elements), no such distinct 
transition was observed. Transition from the quasi-steady cross-wave regime at  low 
values of h to  a strongly modulated wavefield at higher forcing frequencies, can be 
seen clearly in figure 3 ( b )  only for the third mode. In  the quasi-steady regime 
( A  < -0.45), the amplitude fluctuations relative to the mean r.m.s. value did not 
exceed a few per cent, while in the modulated regime this quantity attained values 
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FIGURE 3. The variation with h of (a )  the long-time averaged cross-wave amplitude, and ( b )  the 
r.m.s. of the cross-wave amplitudes, normalized by their mean values; x , n = 3, E = 1.21 x 
O , n = F i , ~ = O . 9 4 3 x l O - ~ ; A , n = 5 , ~ = 1 . 1 5 x l O - ~ .  

which were higher by an order of magnitude. Note that the data presented in figure 
3 is based on averaging the cross-wave amplitudes over the whole duration of 
sampling. This duration a t  all cross-wave modes usually corresponded to 240 periods 
of cross-waves, being longer in some experimental runs. For example, the modulation 
pattern presented in figure 2 represents 720 periods of cross-waves. One can see from 
this figure that the characteristic times of slow modulation may become comparable 
with the total duration of sampling. The scatter of the data for h > -0.45 can be in 
part attributed to this fact. For cross-waves of the fifth mode, the depth of 
modulation is notably lower than in the case of the third mode, and the transition 
between the region of relatively strong modulation and that of an essentially steady 
regime, is not as sharp as in the previous case, and occurs at -0.35 < h < -0.1, for 
both amplitudes of forcing. 

5.2.  Selection of the dissipation coeficients in the theoretical model 
The results of two earlier investigations in the present experimental facility served 
as guides for the choice of the dissipation coefficients in the numerical study. The first 
is the research on the role of dissipation in the time evolution of directly excited 
sloshing waves (Shemer &, Kit 1988), while the other is the analysis of the relation 
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between the dissipation and the neutral stability of cross-waves (Kit & Shemer 1989). 
Both these studies correspond to conditions which are somewhat different from those 
in the present experiments. The results of the neutral stability study which deals 
directly with cross-waves, are limited to vanishingly small amplitudes, while the 
dissipation coefficients estimated from the experiments on the sloshing waves of 
comparable amplitudes are only distantly related to the present investigation of 
subharmonic cross-waves. The preliminary estimates of the dissipation coefficients 
based on these considerations were therefore further redefined by comparing the 
numerical solutions with experiment. 

The dissipation along the tank in our experimental facility is relatively small 
compared to that a t  the wavemaker. The absolute value of the dissipation coefficient 
along the tank, a, = 0.14 and its argument, = 45" were selected as a reasonable 
approximation. The dissipation coefficient a t  the wavemaker, a,, was chosen to be 
imaginary, in agreement with Kit & Shemer (1989), and its absolute value adopted 
here for the fifth mode experiments was a2 = 0.5 at  high dissipation rate at the 
wavemaker and a2 = 0.2 at low dissipation rate. The dissipation coefficient selected 
for a smooth wavemaker at the third mode was a2 = 0.35. The difference between the 
dissipation coefficients for the fifth and for the third cross-wave modes stems from 
the dependence of u2 on the mode number n (Kit & Shemer 1989): 

where 6 corresponds to the thickness of the boundary layer a t  a solid wall in the 
oscillating flow : in the case of purely molecular dissipation 6 represents the thickness 
of the Stokes layer. 

5.3. Numerical computations 

In contrast to the directly excited sloshing waves, cross-waves can be generated 
essentially from rest by parametric resonance only in a narrow band of the values of 
the detuning parameter A. For the selected values of the dissipation coefficients, the 
cross-waves could be excited from rest in the numerical simulations (using the small 
artificial homogeneous forcing term as explained in $3) in the following bands : 
0.93 < h < 0.63 for a2 = 0.2; -0.83 < h < 0.42 for a2 = 0.35 and -0.67 < h < 0.22 
for a2 = 0.5. These bands are in accordance with the results which can be calculated 
based on the neutral stability study of Kit & Shemer (1989). In  experiments, cross- 
waves were indeed excited within these bands. 

For all sets of dissipation coefficients stationary wave patterns were obtained in 
the numerical calculations a t  sufficiently low values of A ,  while a t  higher h the wave- 
field was modulated. Various types of modulation obtained in computations are 
presented in figure 4. In figures 4(a) and 4(b) the wavefield is shown a t  identical 
values of the detuning parameter h = -0.2 and for different dissipation coefficients 
a t  the wavemaker. While at higher dissipation at the wavemaker (figure 4a) soliton- 
type modulations somewhat resembling the patterns observed in the experiments 
were obtained, the modulation a t  lower values of u2 (figure 4 b )  is quite different from 
that of figure 4 ( a ) .  It should be stressed that for n = 5 and low dissipation rate a t  the 
wavemaker, no solitons were obtained a t  any values of h in the numerical 
computations or in the experiments. At slightly higher values of a2 (figure 4c) ,  wave 
patterns vaguely resembling chaotic appearance of solitons in the experiments a t  the 
third mode were obtained at h = -0.4 (cf. figure 2c). 
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FIGURE 4. Long-time modulation of cross-waves obtained in numerical experiments, X = 1 ; 
a,  = 0.14, = 45'; (a)  U, = 0.5,  A = -0.2; (6) a2 = 0.2, A = -0.2; (c) = 0.35, A = -0.4. 

It is thus clear from the results of this section that the agreement between the 
experimental and the numerical results in the case of the parametrically excited 
cross-waves is quite poor when compared to the directly generated sloshing waves. 
This reflects, as was stressed by Jones (1984), the substantially more complex 
physical nature of the cross-waves which are excited by self-interactions defined by 
the implicit homogeneous boundary condition (8), in contrast to relatively 
straightforward direct generation of sloshing waves, caused by an explicit 
inhomogeneous driving term in the wavemaker boundary condition. 

6. Regions of cross-wave existence 
As follows from the results presented in the previous section, cross-waves were 

observed in the experiments in a limited range of variation of the detuning parameter 
A.  It should be stressed here that in the experiments, the cross-waves were excited 
at  the initial stage a t  the most unstable frequency. The forcing frequency was then 
gradually varied, while keeping the wavemaker amplitude constant, and the 
measurements a t  each frequency were performed until no cross-waves could be 
observed in the tank. By this technique, cross-waves could be experimentally 
obtained a t  the values of the detuning parameter h at  which no parametric excitation 
was possible without there being a strong enough cross-wave field already present in 
the tank, For example, a t  the second cross-wave mode, no cross-waves appeared in 
the tank when the wavemaker was operated from rest a t  values of h beyond the range 
-0.5 < h < 0, while with hot initial condition, cross-waves existed even for h < - 3, 
and only a t  h = -3.6 did cross-wave field breakdown occur. 

A similar technique was therefore employed in the numerical experiments. In the 
presence of a small initial disturbance, cross-waves could be excited only a t  the 
values of h within the range of the linear instability, as defined by the neutral 
stability curves obtained for appropriate dissipation conditions by Kit & Shemer 
(1989). Computations of the cross-wave field with the initial hot conditions, i.e. 
starting with the wave field obtained numerically at a close value of A,  indeed showed 
the possibility of sustaining cross-waves a t  the detuning coefficients h lower than the 
smallest value predicted by the linear theory. 
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FIGURE 5. The breakdown of the second mode cross-wave field, B = 1.36 x h = -3.6 

6.1. Physical reasons for the breakdown of the cross-wave jield 

In  the experiments, the gradual reduction of the frequency of forcing was 
accompanied by an increase of the wave amplitude a t  the wavemaker, while the 
extent of the region with noticeable cross-wave amplitude decreased, so that the 
whole wave field became restricted to the vicinity of the wavemaker. Further 
decrease in the forcing frequency resulted in a dramatic breakdown of the cross-wave 
field. Such a breakdown was recorded in the experiments at the second mode and is 
shown in figure 5. It is important to note that a t  all forcing amplitudes and for all 
three cross-wave modes investigated in the present work, breaking of cross-waves in 
the vicinity of the wavemaker was always observed a t  forcing frequencies preceding 
the breakdown value. A photograph of the violent breaking of these extremely steep 
waves was presented in figure 6 of Lichter & Shemer (1986). 

The whole range of existence of nonlinear cross-waves is clearly seen in figure 3 (a) .  
In all cases cross-wave amplitudes gradually decrease with increasing A,  and the 
waves practically vanish a t  A z 0.3. At the low end, on the other hand, a substantial 
difference exists between various modes and amplitudes of forcing. At the third 
mode, cross-waves break down a t  A,, x - 1.6, which is significantly higher than the 
corresponding value for the second mode (Ac, = -3.6, see figure 3). For the higher 
fifth mode, cross-waves disappear at A,, = -0.62 for 8 = 0.943 x lop2 and 
A,, = -0.40 for e = 1.15 x The corresponding maximum values of ICI just 
before the breakdown are also different. 

I n  the numerical simulations, when the detuning parameter was gradually 
decreased, the cross-wave amplitude at  the wavemaker increased indefinitely. This 
phenomenon was accompanied by the shrinking of the wave field to the close vicinity 
of the wavemaker and by fast decay of the wave amplitude with the distance from 
the wavemaker. While this is in qualitative agreement with the experiment, no 
breakdown of cross-waves could be obtained numerically without introducing 
modifications to the model. 

6.2. Steepness of the cross-waves and scaled variables 
In the adopted theoretical model, the detuning parameter A is the only dimensionless 
variable parameter. The results of figure 3(a)  indeed show a pronounced trend of 
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n 8 Aklkn L kna ICImax 

5 0 . 0 9 4 3 ~  -0.106 -0.62 1.01 0.94 

3 1.21 x lo-' -0.094 -1.53 0.90 1.29 
2 1 . 3 6 ~  lo-' -0.083 -3.60 0.83 1.94 

TABLE 1 .  The experimentally measured parameters on the verge of cross-wave field breakdown 

5 1 . 1 5 ~  -0.104 -0.40 1.08 0.76 

collapse of the measured dependence of ICI on h for different experimental conditions. 
The similarity in the dependence /CI = IC(A)l, however, is restricted to relatively high 
values of the detuning coefficient. Both the breakdown values A,, and the maximum 
possible amplitudes lClmax obtained in the experiments appear to be quite different 
for various E and n. One should keep in mind that wave breaking dominates the wave 
field in the vicinity of the wavemaker a t  these high values of ICI. We present here the 
corresponding experimentally measured values of the maximum standing wave 
steepness, k,a, where k, is the wavenumber of the resonant cross-wave of the nth 
mode. The extreme conditions at which cross-waves were observed in the present 
experiments, are summarized in table 1 .  The maximum recorded values of k,a 
significantly exceeded the maximum theoretical value for finite stationary waves of 
permanent form in a perfect fluid, which is equal to 0.685 (Penney & Price 1952). For 
example, for the fifth cross-wave mode, k,a  = 1.10 was obtained for the forcing 
amplitude e = 0.943 x 

thus remains approximately constant for 
all cases studied. It seems physically reasonable to assume that owing to breaking, 
a universal limiting value of the maximum possible standing wave steepness actually 
exists. Employing (6) and the linearized boundary condition at the free surface, the 
following relation between the dimensional wave amplitude a and ICI is obtained: 
a/b  = 2e(.rtn)i)CJ. From here it follows immediately that 

and k, a = 1.18 for e = 0.115 x lop1. 
The maximum wave steepness 

2~(.rtn)tl~1,,, = (k, a)max M const, (11)  

which can explain the experimentally observed dependence of lClmax on both e and 
the mode number n. 

The definition of A (5) can be rewritten in the following way 

2Ak/k, A=--- 
~ ~ ( . r t n ) ~  ' 

where the negligible contribution due to the progressive wave is omitted, and Ak is 
the deviation of the wavenumber corresponding to  the subharmonic of the forcing 
frequency, from the resonant value kn. Comparing ( 1  1) and (12) yields 

The experimentally observed values of Ak,,/k, r 0.10 and M 1.0 remain 
approximately constant for all cases investigated, see table 1. The value of Acr/lClkax, 
which can also be calculated from the data presented in the table, does not differ 
notably from 0.8, in accordance with (13). 
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breakdown of the cross-wave field, obtained nurnericallv. A = - 1.8. initial wave 
field was obtained a t  A = - 1.7, lCImax = 1, dissipation coefficients as in figure 4(c). 

IClmax A,, L/lclL, 
1 .o -1.18 1.18 
1.2 - 1.35 0.94 
1.7 - 3.5 1.21 
2.0 -4.9 1.22 

TABLE 2. The breakdown parameters obtained in the numerical experiments (al = 0.14, 4, = 45", 
u2 = 0.35) 

6.3. Modi$ication of the theoretical model 
These experimental results naturally suggest a limitation which can be introduced 
into the theoretical model in order to account for the wave breaking. There exists a 
maximum possible value of (CI, which is related by (13) to the maximum wave 
steepness k,a in the presence of breaking. At each subsequent timestep in the 
numerical integration the obtained values of IC(X)l were compared with the selected 
limiting value of ICmaxI, and a t  those grid points where the absolute value of C ( X )  
exceeded this threshold, it was replaced by ICma,I, while the argument was retained. 
Although this approach is quite crude, it appears to  retain the basic integral 
properties of the wavefield and drastically improves the agreement between the 
numerical solutions and the experimental observations. Incorporation of the 
restriction on ICI in the model equations leads to the disappearance of the cross-nave 
field a t  certain value of A, see figure 6, in a similar manner to the experimental 
observations, as recorded in figure 5 ,  albeit with a different characteristic time. For 
any given limiting value of lClmax accepted in the computations, the corresponding 
breakdown detuning coefficient A,, was obtained in the computational runs. The 
results of numerous computational runs summarized in table 2 resemble closely the 
experimental data. The values of A,,/(Clt,, obtained numerically are close to unity 
and exceed slightly the corresponding experimental values. 

The reasons for the relation between A,, and lClmax can be heuristically seen from 
the following considerations. In  the governing equation (7), the value of ( A  +21CI2) 
can be interpreted as a coefficient of the linear term. The analysis of the neutral 
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stability curves in the presence of the dissipation a t  the wavemaker shows that the 
instability region does not extend beyond small positive values of A (Kit & Shemer 
1989). One can thus deduce that A,, is roughly proportional to IClka,. While the 
nonlinear term and wave breaking play the decisive role in the cross-wave behaviour 
at low values of A ,  the high-frequency end of the range of cross-wave existence can 
be seen as essentially linear, since the wave amplitudes gradually decrease with 
increasing A ,  both in the experiments and in the numerical comput,ations. 

7. Concluding remarks 
In  the present work we report on extensive experimental and numerical 

investigations of parametrically excited cross-waves in a rectangular tank. The 
results presented here reveal that not only the dissipation along the tank, but also 
the dissipation a t  the wavemaker may be of importance in some experimental 
facilities. Both dissipation mechanisms were incorporated in the model by using 
appropriate complex dissipation coefficients in the governing equation and in the 
wavemaker boundary condition. Special attention was paid to the regions of 
existence of cross-wavcy. It was shown that due to nonlinear effects, cross-waves can 
be sustained at  the values of the dctuning coefficient far below the neutral stability 
limits. A sharp breakdown of the cross-wave field a t  low forcing frequencies was 
revealed in the present study and was attributed to the breaking of the steep cross- 
waves. The limit on the cross-wave amplitude due to breaking was introduced into 
the model and allowed to obtain numerically the values of the detuning parameter 
A,, a t  which this cross-wave field cannot sustain itself anymore. In  this sense not 
only qualitative, but also quantitative agreement with the experiment is quite 
satisfactory. 

Jones (1984) indicated that the NLS equation can only describe correctly the 
experiment when damping is taken into consideration. Lichter & Chen (1987), 
indeed, obtained good quantitative agreement between their numerical solution of 
the NLS equation and the experiment of Barnard & Pritchard (1972). Lichter & Chen 
perform their comparison of the numerical and experimental results in the presence 
of very strong dissipation along the tank, estimated from the neutral stability by 
Barnard & Pritchard and at a single value of the forcing frequency. In  reality, 
however, the dissipation mechanisms depend strongly on the existing wave field, and 
we doubt that a single dissipation coefficient can describe properly the whole variety 
of existing wave patterns. Even when complex dissipation coefficients along the tank 
and at the wavemaker are taken into account and limitations on wave amplitude 
caused by the wave breaking are accounted for as well, only qualitative agreement 
between the wave patterns observed in a wide range of experimental conditions and 
the results of the corresponding numerical computations, could be obtained. In spite 
of these reservations, the suggested model, which incorporates both nonlinear and 
damping effects, appears to grasp correctly the major physical mechanisms governing 
the long-time evolution of cross-waves and provides a useful tool for describing the 
region of their existence. 

This work was supported in part by the US-Israel Binational Science Foundation 
grant no. 85-00343. We are grateful to the reviewers for their constructive remarks, 
which helped to improve this paper. 
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